Reading LangChain's Summarization Code (2) - Map Reduce
In this series, we’re diving into the mechanics of LangChain’s summarization chains as outlined in the LangChain documentation on Summarization.
This post focuses on the Map Reduce method (chain_type="map-reduce"
) for summarization.
-
This article uses LangChain version
0.1.17
.$ pip list|grep langchain langchain 0.1.17 langchain-community 0.0.37 langchain-core 0.1.52 langchain-openai 0.1.6 langchain-text-splitters 0.0.1 langchainhub 0.1.15
4. Option 2: Map-Reduce
Let’s take a look at the code for chain_type="map-reduce"
. For the Map Reduce method, a summarization chain is created using the following code:
_load_map_reduce_chain(llm, verbose=verbose, **kwargs)
4.1. _load_map_reduce_chain
The _load_map_reduce_chain
function is defined as follows (link):
def _load_map_reduce_chain(
llm: BaseLanguageModel,
map_prompt: BasePromptTemplate = map_reduce_prompt.PROMPT,
combine_prompt: BasePromptTemplate = map_reduce_prompt.PROMPT,
combine_document_variable_name: str = "text",
map_reduce_document_variable_name: str = "text",
collapse_prompt: Optional[BasePromptTemplate] = None,
reduce_llm: Optional[BaseLanguageModel] = None,
collapse_llm: Optional[BaseLanguageModel] = None,
verbose: Optional[bool] = None,
token_max: int = 3000,
callbacks: Callbacks = None,
*,
collapse_max_retries: Optional[int] = None,
**kwargs: Any,
) -> MapReduceDocumentsChain:
map_chain = LLMChain(
llm=llm,
prompt=map_prompt,
verbose=verbose, # type: ignore[arg-type]
callbacks=callbacks, # type: ignore[arg-type]
)
_reduce_llm = reduce_llm or llm
reduce_chain = LLMChain(
llm=_reduce_llm,
prompt=combine_prompt,
verbose=verbose, # type: ignore[arg-type]
callbacks=callbacks, # type: ignore[arg-type]
)
# TODO: document prompt
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain,
document_variable_name=combine_document_variable_name,
verbose=verbose, # type: ignore[arg-type]
callbacks=callbacks,
)
if collapse_prompt is None:
collapse_chain = None
if collapse_llm is not None:
raise ValueError(
"collapse_llm provided, but collapse_prompt was not: please "
"provide one or stop providing collapse_llm."
)
else:
_collapse_llm = collapse_llm or llm
collapse_chain = StuffDocumentsChain(
llm_chain=LLMChain(
llm=_collapse_llm,
prompt=collapse_prompt,
verbose=verbose, # type: ignore[arg-type]
callbacks=callbacks,
),
document_variable_name=combine_document_variable_name,
)
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=collapse_chain,
token_max=token_max,
verbose=verbose, # type: ignore[arg-type]
callbacks=callbacks,
collapse_max_retries=collapse_max_retries,
)
return MapReduceDocumentsChain(
llm_chain=map_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name=map_reduce_document_variable_name,
verbose=verbose, # type: ignore[arg-type]
callbacks=callbacks,
**kwargs,
)
-
The
LLMChain
class is used to create a chain,map_chain
that generates responses using the specified LLM (llm
) and prompt template (map_prompt
).-
By default,
map_prompt
is set tomap_reduce_prompt.PROMPT
, which is defined as follows (link):from langchain_core.prompts import PromptTemplate prompt_template = """Write a concise summary of the following: "{text}" CONCISE SUMMARY:""" PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
-
-
Similarly,
reduce_chain
is created using the specifiedreduce_llm
andcombine_prompt
.- By default,
reduce_llm
is set tollm
. - By default,
combine_prompt
is set tomap_reduce_prompt.PROMPT
.
- By default,
-
StuffDocumentsChain
is used to createcombine_documents_chain
by passingreduce_chain
to it. -
If
collapse_prompt
is set, anLLMChain
is created usingcollapse_prompt
andcollapse_llm
, formingcollapse_chain
for summarization. Ifcollapse_prompt
is not set,collapse_chain
is set toNone
.- If
collapse_llm
is not specified,llm
is used instead.
- If
-
reduce_documents_chain
is created by passingcombine_documents_chain
andcollapse_chain
toReduceDocumentsChain
. -
Finally,
MapReduceDocumentsChain
is created by passingmap_chain
andreduce_documents_chain
to it.
graph TD; llm{{llm}} --> map_chain["map_chain (LLMChain)"]; map_prompt{{map_prompt}} --> map_chain; reduce_llm{{reduce_llm}} --> reduce_chain["reduce_chain (LLMChain)"]; combine_prompt{{combine_prompt}} --> reduce_chain; reduce_chain --> combine_documents_chain["combine_documents_chain (StuffDocumentsChain)"]; collapse_llm{{collapse_llm}} --> collapse_llm_chain; collapse_prompt{{collapse_prompt}} --> collapse_llm_chain["(LLMChain)"]; collapse_llm_chain --> collapse_chain["collapse_chain (StuffDocumentsChain)"]; combine_documents_chain --> reduce_documents_chain["reduce_documents_chain (ReduceDocumentsChain)"]; collapse_chain --> reduce_documents_chain; map_chain --> MapReduceDocumentsChain["(MapReduceDocumentsChain)"]; reduce_documents_chain --> MapReduceDocumentsChain;
4.2. ReduceDocumentsChain
Let’s examine the code for ReduceDocumentsChain
(link):
class ReduceDocumentsChain(BaseCombineDocumentsChain):
"""Combine documents by recursively reducing them.
This involves
- combine_documents_chain
- collapse_documents_chain
`combine_documents_chain` is ALWAYS provided. This is final chain that is called.
We pass all previous results to this chain, and the output of this chain is
returned as a final result.
`collapse_documents_chain` is used if the documents passed in are too many to all
be passed to `combine_documents_chain` in one go. In this case,
`collapse_documents_chain` is called recursively on as big of groups of documents
as are allowed.
Example:
.. code-block:: python
from langchain.chains import (
StuffDocumentsChain, LLMChain, ReduceDocumentsChain
)
from langchain_core.prompts import PromptTemplate
from langchain_community.llms import OpenAI
# This controls how each document will be formatted. Specifically,
# it will be passed to `format_document` - see that function for more
# details.
document_prompt = PromptTemplate(
input_variables=["page_content"],
template="{page_content}"
)
document_variable_name = "context"
llm = OpenAI()
# The prompt here should take as an input variable the
# `document_variable_name`
prompt = PromptTemplate.from_template(
"Summarize this content: {context}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
combine_documents_chain = StuffDocumentsChain(
llm_chain=llm_chain,
document_prompt=document_prompt,
document_variable_name=document_variable_name
)
chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
)
# If we wanted to, we could also pass in collapse_documents_chain
# which is specifically aimed at collapsing documents BEFORE
# the final call.
prompt = PromptTemplate.from_template(
"Collapse this content: {context}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
collapse_documents_chain = StuffDocumentsChain(
llm_chain=llm_chain,
document_prompt=document_prompt,
document_variable_name=document_variable_name
)
chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=collapse_documents_chain,
)
"""
combine_documents_chain: BaseCombineDocumentsChain
"""Final chain to call to combine documents.
This is typically a StuffDocumentsChain."""
collapse_documents_chain: Optional[BaseCombineDocumentsChain] = None
"""Chain to use to collapse documents if needed until they can all fit.
If None, will use the combine_documents_chain.
This is typically a StuffDocumentsChain."""
token_max: int = 3000
"""The maximum number of tokens to group documents into. For example, if
set to 3000 then documents will be grouped into chunks of no greater than
3000 tokens before trying to combine them into a smaller chunk."""
collapse_max_retries: Optional[int] = None
"""The maximum number of retries to collapse documents to fit token_max.
If None, it will keep trying to collapse documents to fit token_max.
Otherwise, after it reaches the max number, it will throw an error"""
...
@property
def _collapse_chain(self) -> BaseCombineDocumentsChain:
if self.collapse_documents_chain is not None:
return self.collapse_documents_chain
else:
return self.combine_documents_chain
def combine_docs(
self,
docs: List[Document],
token_max: Optional[int] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> Tuple[str, dict]:
"""Combine multiple documents recursively.
Args:
docs: List of documents to combine, assumed that each one is less than
`token_max`.
token_max: Recursively creates groups of documents less than this number
of tokens.
callbacks: Callbacks to be passed through
**kwargs: additional parameters to be passed to LLM calls (like other
input variables besides the documents)
Returns:
The first element returned is the single string output. The second
element returned is a dictionary of other keys to return.
"""
result_docs, extra_return_dict = self._collapse(
docs, token_max=token_max, callbacks=callbacks, **kwargs
)
return self.combine_documents_chain.combine_docs(
docs=result_docs, callbacks=callbacks, **kwargs
)
def _collapse(
self,
docs: List[Document],
token_max: Optional[int] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> Tuple[List[Document], dict]:
result_docs = docs
length_func = self.combine_documents_chain.prompt_length
num_tokens = length_func(result_docs, **kwargs)
def _collapse_docs_func(docs: List[Document], **kwargs: Any) -> str:
return self._collapse_chain.run(
input_documents=docs, callbacks=callbacks, **kwargs
)
_token_max = token_max or self.token_max
retries: int = 0
while num_tokens is not None and num_tokens > _token_max:
new_result_doc_list = split_list_of_docs(
result_docs, length_func, _token_max, **kwargs
)
result_docs = []
for docs in new_result_doc_list:
new_doc = collapse_docs(docs, _collapse_docs_func, **kwargs)
result_docs.append(new_doc)
num_tokens = length_func(result_docs, **kwargs)
retries += 1
if self.collapse_max_retries and retries == self.collapse_max_retries:
raise ValueError(
f"Exceed {self.collapse_max_retries} tries to \
collapse document to {_token_max} tokens."
)
return result_docs, {}
-
The docstring explains the following:
combine_documents_chain
is called last to combine all the documents into a final summary.collapse_documents_chain
is used if the documents are too many to fit intocombine_documents_chain
at once. It recursively shortens the documents.
-
Other parameters include:
token_max
: Maximum number of tokens for grouping documents. Defaults to 3000.collapse_max_retries
: Maximum attempts to shorten documents to fittoken_max
. Defaults toNone
(unlimited).
-
If
collapse_documents_chain
is not provided,combine_documents_chain
is used instead. -
The recursive process for shortening documents is as follows:
- Use
split_list_of_docs
function (link) to split the document list into groups with no more thantoken_max
tokens. - Summarize each group using
collapse_documents_chain
. - Repeat until the total token count is below
token_max
.
- Use
4.3. MapReduceDocumentsChain
Next, let’s examine the code for MapReduceDocumentsChain
(link):
class MapReduceDocumentsChain(BaseCombineDocumentsChain):
"""Combining documents by mapping a chain over them, then combining results.
We first call `llm_chain` on each document individually, passing in the
`page_content` and any other kwargs. This is the `map` step.
We then process the results of that `map` step in a `reduce` step. This should
likely be a ReduceDocumentsChain.
Example:
.. code-block:: python
from langchain.chains import (
StuffDocumentsChain,
LLMChain,
ReduceDocumentsChain,
MapReduceDocumentsChain,
)
from langchain_core.prompts import PromptTemplate
from langchain_community.llms import OpenAI
# This controls how each document will be formatted. Specifically,
# it will be passed to `format_document` - see that function for more
# details.
document_prompt = PromptTemplate(
input_variables=["page_content"],
template="{page_content}"
)
document_variable_name = "context"
llm = OpenAI()
# The prompt here should take as an input variable the
# `document_variable_name`
prompt = PromptTemplate.from_template(
"Summarize this content: {context}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
# We now define how to combine these summaries
reduce_prompt = PromptTemplate.from_template(
"Combine these summaries: {context}"
)
reduce_llm_chain = LLMChain(llm=llm, prompt=reduce_prompt)
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_llm_chain,
document_prompt=document_prompt,
document_variable_name=document_variable_name
)
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
)
chain = MapReduceDocumentsChain(
llm_chain=llm_chain,
reduce_documents_chain=reduce_documents_chain,
)
# If we wanted to, we could also pass in collapse_documents_chain
# which is specifically aimed at collapsing documents BEFORE
# the final call.
prompt = PromptTemplate.from_template(
"Collapse this content: {context}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
collapse_documents_chain = StuffDocumentsChain(
llm_chain=llm_chain,
document_prompt=document_prompt,
document_variable_name=document_variable_name
)
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=collapse_documents_chain,
)
chain = MapReduceDocumentsChain(
llm_chain=llm_chain,
reduce_documents_chain=reduce_documents_chain,
)
"""
llm_chain: LLMChain
"""Chain to apply to each document individually."""
reduce_documents_chain: BaseCombineDocumentsChain
"""Chain to use to reduce the results of applying `llm_chain` to each doc.
This typically either a ReduceDocumentChain or StuffDocumentChain."""
document_variable_name: str
"""The variable name in the llm_chain to put the documents in.
If only one variable in the llm_chain, this need not be provided."""
return_intermediate_steps: bool = False
"""Return the results of the map steps in the output."""
...
def combine_docs(
self,
docs: List[Document],
token_max: Optional[int] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> Tuple[str, dict]:
"""Combine documents in a map reduce manner.
Combine by mapping first chain over all documents, then reducing the results.
This reducing can be done recursively if needed (if there are many documents).
"""
map_results = self.llm_chain.apply(
# FYI - this is parallelized and so it is fast.
[{self.document_variable_name: d.page_content, **kwargs} for d in docs],
callbacks=callbacks,
)
question_result_key = self.llm_chain.output_key
result_docs = [
Document(page_content=r[question_result_key], metadata=docs[i].metadata)
# This uses metadata from the docs, and the textual results from `results`
for i, r in enumerate(map_results)
]
result, extra_return_dict = self.reduce_documents_chain.combine_docs(
result_docs, token_max=token_max, callbacks=callbacks, **kwargs
)
if self.return_intermediate_steps:
intermediate_steps = [r[question_result_key] for r in map_results]
extra_return_dict["intermediate_steps"] = intermediate_steps
return result, extra_return_dict
- The
combine_docs
method works as follows:- Uses
llm_chain
(in this case,map_chain
) to generate summaries for each document. - Uses
reduce_documents_chain
to create a summary from the generated summaries.
- Uses
4.4. Summary
The load_summarize_chain
function with chain_type="map-reduce"
works as follows:
-
Summarizes each document using
llm
andmap_prompt
.-
If
map_prompt
is not specified, the following template is used:Write a concise summary of the following: "{text}" CONCISE SUMMARY:
-
-
Recursively groups and summarizes documents using
collapse_llm
andcollapse_prompt
until they can be summarized in one go.- If
collapse_prompt
is not specified,reduce_llm
andcombine_prompt
are used instead.
- If
-
Generates the final summary using
reduce_llm
andcombine_prompt
.- If
reduce_llm
is not specified,llm
is used. - If
combine_prompt
is not specified, the same default value asmap_prompt
is used.
- If
-
The
token_max
option sets the maximum number of tokens for grouping documents.- Default is 3000.