Reading LangChain's Summarization Code (2) - Map Reduce

Series - Reading LangChain's Summarization Code

In this series, we’re diving into the mechanics of LangChain’s summarization chains as outlined in the LangChain documentation on Summarization.

This post focuses on the Map Reduce method (chain_type="map-reduce") for summarization.

  • This article uses LangChain version 0.1.17.

    $ pip list|grep langchain
    langchain                0.1.17
    langchain-community      0.0.37
    langchain-core           0.1.52
    langchain-openai         0.1.6
    langchain-text-splitters 0.0.1
    langchainhub             0.1.15
    

Let’s take a look at the code for chain_type="map-reduce". For the Map Reduce method, a summarization chain is created using the following code:

_load_map_reduce_chain(llm, verbose=verbose, **kwargs)

The _load_map_reduce_chain function is defined as follows (link):

def _load_map_reduce_chain(
    llm: BaseLanguageModel,
    map_prompt: BasePromptTemplate = map_reduce_prompt.PROMPT,
    combine_prompt: BasePromptTemplate = map_reduce_prompt.PROMPT,
    combine_document_variable_name: str = "text",
    map_reduce_document_variable_name: str = "text",
    collapse_prompt: Optional[BasePromptTemplate] = None,
    reduce_llm: Optional[BaseLanguageModel] = None,
    collapse_llm: Optional[BaseLanguageModel] = None,
    verbose: Optional[bool] = None,
    token_max: int = 3000,
    callbacks: Callbacks = None,
    *,
    collapse_max_retries: Optional[int] = None,
    **kwargs: Any,
) -> MapReduceDocumentsChain:
    map_chain = LLMChain(
        llm=llm,
        prompt=map_prompt,
        verbose=verbose,  # type: ignore[arg-type]
        callbacks=callbacks,  # type: ignore[arg-type]
    )
    _reduce_llm = reduce_llm or llm
    reduce_chain = LLMChain(
        llm=_reduce_llm,
        prompt=combine_prompt,
        verbose=verbose,  # type: ignore[arg-type]
        callbacks=callbacks,  # type: ignore[arg-type]
    )
    # TODO: document prompt
    combine_documents_chain = StuffDocumentsChain(
        llm_chain=reduce_chain,
        document_variable_name=combine_document_variable_name,
        verbose=verbose,  # type: ignore[arg-type]
        callbacks=callbacks,
    )
    if collapse_prompt is None:
        collapse_chain = None
        if collapse_llm is not None:
            raise ValueError(
                "collapse_llm provided, but collapse_prompt was not: please "
                "provide one or stop providing collapse_llm."
            )
    else:
        _collapse_llm = collapse_llm or llm
        collapse_chain = StuffDocumentsChain(
            llm_chain=LLMChain(
                llm=_collapse_llm,
                prompt=collapse_prompt,
                verbose=verbose,  # type: ignore[arg-type]
                callbacks=callbacks,
            ),
            document_variable_name=combine_document_variable_name,
        )
    reduce_documents_chain = ReduceDocumentsChain(
        combine_documents_chain=combine_documents_chain,
        collapse_documents_chain=collapse_chain,
        token_max=token_max,
        verbose=verbose,  # type: ignore[arg-type]
        callbacks=callbacks,
        collapse_max_retries=collapse_max_retries,
    )
    return MapReduceDocumentsChain(
        llm_chain=map_chain,
        reduce_documents_chain=reduce_documents_chain,
        document_variable_name=map_reduce_document_variable_name,
        verbose=verbose,  # type: ignore[arg-type]
        callbacks=callbacks,
        **kwargs,
    )
  1. The LLMChain class is used to create a chain, map_chain that generates responses using the specified LLM (llm) and prompt template (map_prompt).

    • By default, map_prompt is set to map_reduce_prompt.PROMPT, which is defined as follows (link):

      from langchain_core.prompts import PromptTemplate
      
      prompt_template = """Write a concise summary of the following:
      
      
      "{text}"
      
      
      CONCISE SUMMARY:"""
      PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
      
  2. Similarly, reduce_chain is created using the specified reduce_llm and combine_prompt.

    • By default, reduce_llm is set to llm.
    • By default, combine_prompt is set to map_reduce_prompt.PROMPT.
  3. StuffDocumentsChain is used to create combine_documents_chain by passing reduce_chain to it.

  4. If collapse_prompt is set, an LLMChain is created using collapse_prompt and collapse_llm, forming collapse_chain for summarization. If collapse_prompt is not set, collapse_chain is set to None.

    • If collapse_llm is not specified, llm is used instead.
  5. reduce_documents_chain is created by passing combine_documents_chain and collapse_chain to ReduceDocumentsChain.

  6. Finally, MapReduceDocumentsChain is created by passing map_chain and reduce_documents_chain to it.

graph TD;
    llm{{llm}} --> map_chain["map_chain (LLMChain)"];
    map_prompt{{map_prompt}} --> map_chain;
    reduce_llm{{reduce_llm}} --> reduce_chain["reduce_chain (LLMChain)"];
    combine_prompt{{combine_prompt}} --> reduce_chain;
    reduce_chain --> combine_documents_chain["combine_documents_chain (StuffDocumentsChain)"];
    collapse_llm{{collapse_llm}} --> collapse_llm_chain;
    collapse_prompt{{collapse_prompt}} --> collapse_llm_chain["(LLMChain)"];
    collapse_llm_chain --> collapse_chain["collapse_chain (StuffDocumentsChain)"];
    combine_documents_chain --> reduce_documents_chain["reduce_documents_chain (ReduceDocumentsChain)"];
    collapse_chain --> reduce_documents_chain;
    map_chain --> MapReduceDocumentsChain["(MapReduceDocumentsChain)"];
    reduce_documents_chain --> MapReduceDocumentsChain;

Let’s examine the code for ReduceDocumentsChain (link):

class ReduceDocumentsChain(BaseCombineDocumentsChain):
    """Combine documents by recursively reducing them.

    This involves

    - combine_documents_chain

    - collapse_documents_chain

    `combine_documents_chain` is ALWAYS provided. This is final chain that is called.
    We pass all previous results to this chain, and the output of this chain is
    returned as a final result.

    `collapse_documents_chain` is used if the documents passed in are too many to all
    be passed to `combine_documents_chain` in one go. In this case,
    `collapse_documents_chain` is called recursively on as big of groups of documents
    as are allowed.

    Example:
        .. code-block:: python

            from langchain.chains import (
                StuffDocumentsChain, LLMChain, ReduceDocumentsChain
            )
            from langchain_core.prompts import PromptTemplate
            from langchain_community.llms import OpenAI

            # This controls how each document will be formatted. Specifically,
            # it will be passed to `format_document` - see that function for more
            # details.
            document_prompt = PromptTemplate(
                input_variables=["page_content"],
                 template="{page_content}"
            )
            document_variable_name = "context"
            llm = OpenAI()
            # The prompt here should take as an input variable the
            # `document_variable_name`
            prompt = PromptTemplate.from_template(
                "Summarize this content: {context}"
            )
            llm_chain = LLMChain(llm=llm, prompt=prompt)
            combine_documents_chain = StuffDocumentsChain(
                llm_chain=llm_chain,
                document_prompt=document_prompt,
                document_variable_name=document_variable_name
            )
            chain = ReduceDocumentsChain(
                combine_documents_chain=combine_documents_chain,
            )
            # If we wanted to, we could also pass in collapse_documents_chain
            # which is specifically aimed at collapsing documents BEFORE
            # the final call.
            prompt = PromptTemplate.from_template(
                "Collapse this content: {context}"
            )
            llm_chain = LLMChain(llm=llm, prompt=prompt)
            collapse_documents_chain = StuffDocumentsChain(
                llm_chain=llm_chain,
                document_prompt=document_prompt,
                document_variable_name=document_variable_name
            )
            chain = ReduceDocumentsChain(
                combine_documents_chain=combine_documents_chain,
                collapse_documents_chain=collapse_documents_chain,
            )
    """

    combine_documents_chain: BaseCombineDocumentsChain
    """Final chain to call to combine documents.
    This is typically a StuffDocumentsChain."""
    collapse_documents_chain: Optional[BaseCombineDocumentsChain] = None
    """Chain to use to collapse documents if needed until they can all fit.
    If None, will use the combine_documents_chain.
    This is typically a StuffDocumentsChain."""
    token_max: int = 3000
    """The maximum number of tokens to group documents into. For example, if
    set to 3000 then documents will be grouped into chunks of no greater than
    3000 tokens before trying to combine them into a smaller chunk."""
    collapse_max_retries: Optional[int] = None
    """The maximum number of retries to collapse documents to fit token_max.
    If None, it will keep trying to collapse documents to fit token_max.
    Otherwise, after it reaches the max number, it will throw an error"""

    ...

    @property
    def _collapse_chain(self) -> BaseCombineDocumentsChain:
        if self.collapse_documents_chain is not None:
            return self.collapse_documents_chain
        else:
            return self.combine_documents_chain

    def combine_docs(
        self,
        docs: List[Document],
        token_max: Optional[int] = None,
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Tuple[str, dict]:
        """Combine multiple documents recursively.

        Args:
            docs: List of documents to combine, assumed that each one is less than
                `token_max`.
            token_max: Recursively creates groups of documents less than this number
                of tokens.
            callbacks: Callbacks to be passed through
            **kwargs: additional parameters to be passed to LLM calls (like other
                input variables besides the documents)

        Returns:
            The first element returned is the single string output. The second
            element returned is a dictionary of other keys to return.
        """
        result_docs, extra_return_dict = self._collapse(
            docs, token_max=token_max, callbacks=callbacks, **kwargs
        )
        return self.combine_documents_chain.combine_docs(
            docs=result_docs, callbacks=callbacks, **kwargs
        )

    def _collapse(
        self,
        docs: List[Document],
        token_max: Optional[int] = None,
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Tuple[List[Document], dict]:
        result_docs = docs
        length_func = self.combine_documents_chain.prompt_length
        num_tokens = length_func(result_docs, **kwargs)

        def _collapse_docs_func(docs: List[Document], **kwargs: Any) -> str:
            return self._collapse_chain.run(
                input_documents=docs, callbacks=callbacks, **kwargs
            )

        _token_max = token_max or self.token_max
        retries: int = 0
        while num_tokens is not None and num_tokens > _token_max:
            new_result_doc_list = split_list_of_docs(
                result_docs, length_func, _token_max, **kwargs
            )
            result_docs = []
            for docs in new_result_doc_list:
                new_doc = collapse_docs(docs, _collapse_docs_func, **kwargs)
                result_docs.append(new_doc)
            num_tokens = length_func(result_docs, **kwargs)
            retries += 1
            if self.collapse_max_retries and retries == self.collapse_max_retries:
                raise ValueError(
                    f"Exceed {self.collapse_max_retries} tries to \
                        collapse document to {_token_max} tokens."
                )
        return result_docs, {}
  • The docstring explains the following:

    1. combine_documents_chain is called last to combine all the documents into a final summary.
    2. collapse_documents_chain is used if the documents are too many to fit into combine_documents_chain at once. It recursively shortens the documents.
  • Other parameters include:

    • token_max: Maximum number of tokens for grouping documents. Defaults to 3000.
    • collapse_max_retries: Maximum attempts to shorten documents to fit token_max. Defaults to None(unlimited).
  • If collapse_documents_chain is not provided, combine_documents_chain is used instead.

  • The recursive process for shortening documents is as follows:

    1. Use split_list_of_docs function (link) to split the document list into groups with no more than token_max tokens.
    2. Summarize each group using collapse_documents_chain.
    3. Repeat until the total token count is below token_max.

Next, let’s examine the code for MapReduceDocumentsChain (link):

class MapReduceDocumentsChain(BaseCombineDocumentsChain):
    """Combining documents by mapping a chain over them, then combining results.

    We first call `llm_chain` on each document individually, passing in the
    `page_content` and any other kwargs. This is the `map` step.

    We then process the results of that `map` step in a `reduce` step. This should
    likely be a ReduceDocumentsChain.

    Example:
        .. code-block:: python

            from langchain.chains import (
                StuffDocumentsChain,
                LLMChain,
                ReduceDocumentsChain,
                MapReduceDocumentsChain,
            )
            from langchain_core.prompts import PromptTemplate
            from langchain_community.llms import OpenAI

            # This controls how each document will be formatted. Specifically,
            # it will be passed to `format_document` - see that function for more
            # details.
            document_prompt = PromptTemplate(
                input_variables=["page_content"],
                 template="{page_content}"
            )
            document_variable_name = "context"
            llm = OpenAI()
            # The prompt here should take as an input variable the
            # `document_variable_name`
            prompt = PromptTemplate.from_template(
                "Summarize this content: {context}"
            )
            llm_chain = LLMChain(llm=llm, prompt=prompt)
            # We now define how to combine these summaries
            reduce_prompt = PromptTemplate.from_template(
                "Combine these summaries: {context}"
            )
            reduce_llm_chain = LLMChain(llm=llm, prompt=reduce_prompt)
            combine_documents_chain = StuffDocumentsChain(
                llm_chain=reduce_llm_chain,
                document_prompt=document_prompt,
                document_variable_name=document_variable_name
            )
            reduce_documents_chain = ReduceDocumentsChain(
                combine_documents_chain=combine_documents_chain,
            )
            chain = MapReduceDocumentsChain(
                llm_chain=llm_chain,
                reduce_documents_chain=reduce_documents_chain,
            )
            # If we wanted to, we could also pass in collapse_documents_chain
            # which is specifically aimed at collapsing documents BEFORE
            # the final call.
            prompt = PromptTemplate.from_template(
                "Collapse this content: {context}"
            )
            llm_chain = LLMChain(llm=llm, prompt=prompt)
            collapse_documents_chain = StuffDocumentsChain(
                llm_chain=llm_chain,
                document_prompt=document_prompt,
                document_variable_name=document_variable_name
            )
            reduce_documents_chain = ReduceDocumentsChain(
                combine_documents_chain=combine_documents_chain,
                collapse_documents_chain=collapse_documents_chain,
            )
            chain = MapReduceDocumentsChain(
                llm_chain=llm_chain,
                reduce_documents_chain=reduce_documents_chain,
            )
    """

    llm_chain: LLMChain
    """Chain to apply to each document individually."""
    reduce_documents_chain: BaseCombineDocumentsChain
    """Chain to use to reduce the results of applying `llm_chain` to each doc.
    This typically either a ReduceDocumentChain or StuffDocumentChain."""
    document_variable_name: str
    """The variable name in the llm_chain to put the documents in.
    If only one variable in the llm_chain, this need not be provided."""
    return_intermediate_steps: bool = False
    """Return the results of the map steps in the output."""

    ...
    def combine_docs(
        self,
        docs: List[Document],
        token_max: Optional[int] = None,
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Tuple[str, dict]:
        """Combine documents in a map reduce manner.

        Combine by mapping first chain over all documents, then reducing the results.
        This reducing can be done recursively if needed (if there are many documents).
        """
        map_results = self.llm_chain.apply(
            # FYI - this is parallelized and so it is fast.
            [{self.document_variable_name: d.page_content, **kwargs} for d in docs],
            callbacks=callbacks,
        )
        question_result_key = self.llm_chain.output_key
        result_docs = [
            Document(page_content=r[question_result_key], metadata=docs[i].metadata)
            # This uses metadata from the docs, and the textual results from `results`
            for i, r in enumerate(map_results)
        ]
        result, extra_return_dict = self.reduce_documents_chain.combine_docs(
            result_docs, token_max=token_max, callbacks=callbacks, **kwargs
        )
        if self.return_intermediate_steps:
            intermediate_steps = [r[question_result_key] for r in map_results]
            extra_return_dict["intermediate_steps"] = intermediate_steps
        return result, extra_return_dict
  • The combine_docs method works as follows:
    1. Uses llm_chain (in this case, map_chain) to generate summaries for each document.
    2. Uses reduce_documents_chain to create a summary from the generated summaries.

The load_summarize_chain function with chain_type="map-reduce" works as follows:

  1. Summarizes each document using llm and map_prompt.

    • If map_prompt is not specified, the following template is used:

      Write a concise summary of the following:
      
      
      "{text}"
      
      
      CONCISE SUMMARY:
      
  2. Recursively groups and summarizes documents using collapse_llm and collapse_prompt until they can be summarized in one go.

    • If collapse_prompt is not specified, reduce_llm and combine_prompt are used instead.
  3. Generates the final summary using reduce_llm and combine_prompt.

    • If reduce_llm is not specified, llm is used.
    • If combine_prompt is not specified, the same default value as map_prompt is used.
  4. The token_max option sets the maximum number of tokens for grouping documents.

    • Default is 3000.

Related Content